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1 ABSTRACT P[

’ The renewal function is a basic tool used in many probabilistic models

and sequential analysis. Based on a random sample of size n, a nonpara-

metric estimator of the renewal function is introduced. Asymptotic properties
of the estimator such as the almost sure consistency and local asymptotic
normality are developed. A discussion of an application of the estimator is

also provided.

AMS (MOS) Subject Classifications: Primary 62G05; secondary 60K05, 62M99.
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SIGNIFICANCE AND EXPLANATION

Let X4, X5, ... be identically and independently distributed with

distribution function F. With S = X5 +...+ X, let F(k)(t) = P(Sk < t)
be the k-fold convolution of F for k ? 1. The renewal function H is
defined by

HiE) = Lo 5 ()
for t > 0.

The renewal function is a basic tool used in sequential analysis and used
in probabilistic models arising in areas such as reliability theory, inventory
theory, continuous sampling plans and warranty analysis. Use of the renewal
function is becoming widespread as efficient computational techniques, which
can be applied when the failure distribution is known, become available. It
is surprising that, especially for small sample sizes, estimation of the key
function based on available data has not been addressed directly.

Based on a random sample of size n, a nonparametric estimator of the
renewal function is introduced. Various statistical properties of the
estimator, such as consistency and asymptotic normality, are developed. A

discussion of an application of the estimator to warranty analysis is also

provided.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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NONPARAMETRIC RENEWAL FUNCTION ESTIMATION

Edward W. Frees

§1. Introduction

Let X;, X9, ... be identlcally and independently distributed random vari-
ables with distribution function F. Assume that F has positive mean u and
finite variance 2. With S = Xj + ... + X, let P () = P(S) € t) be the

k-fold convolution of F for k»1. The renewal function H is defined by

He) = §, .. FO () (1.1)

k>l

for t>0. The renewal function can be thought of as the expected number of
renewals in [0,t], where the number of renewals in [0,t] is denoted by N(t) and

defined by
N(t) = L5 I(5, < B). (1.2)

Here I(°+) is the indicator function of a set. When the observations X; are non-
negative, an equivalent deflnition for the number of renewals in [0,t] 1is

N(t) = {sup k: S, < t}. The renewal function plays an important role in many

k
probabilistic models (cf., Feller, 1971 and Karlin and Taylor, 1975) and sequen-
tial analysis (cf., Woodroofe, 1982).

Most classical estimators of the renewal function are based on the assump-
tion of a parametric form for F, typically an exponential or Gamma distribution.
See Cox and Lewis (1966) for an early treatment of the statistical analysis of
renewal processes. Most nonparametric estimators of H(t) are based on a reali-
zation of the renewal process {x1}1:1 and on theorems which yleld simple approx—
imations of H(t) for asymptotically large values of time t. For example, sup-
pose that the nonnegative values X; are recorded and that F has an arithmetic

distribution. Recall that a distributfon function is said to be arithmetic if

fts support is on {0, +d, + 2d, ...} for some constant d. Then, the result

Lim  H(t) - t/u = (o + u - wd)/(26%)

t +o

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(cf., Peller, 1968, p. 341) has suggested the use of the estimator

= A R _E . 3 A AMMEMSL 4 4 a M

Ht) =t/n+ (s 2+p-u2)2s?d) (1.3)

s R & K

where H and o 2 are estimators of u and 02 based on the data recorded up to time
t. See Yang (1983) for an application of H(t) to continuous sampling plans.
Another well-known example is a functional central limit theorem for N(t) given

by Billingsley (1968, Theorem 17.3). Here the limits are for t approaching =.

oS & & 8 8 N8 SRSy Fif

In this paper, estimators of H(t) for a fixed time t are based on a random
sample of size n, X;,X3,..,X;. Estimation of the distribution function F and
linear functionals of F are problems that have been thoroughly investigated in

the literature (ef., Serfling, 1980, chapters 2 and 6). Viewing H(t) defined in

(1.1) as merely the infinite sum of convolutions of F, it seems natural to esti-
mate H(t) based on a sum of estimators of the convolutions of F. As one would
suspect, even though estimators of the type in (1.3) are based on recorded
observations, they do not perform well for small (relative to u) times t. This
was pointed out by Frees (1984). 1In that study the author introduced several
estimators, both parametric and nonparametric, of H(t) for a fixed time t based
on a random sample of size n. One nonparametric estimator performed particu-
larly well in the simulation portion of that study. A variation of that estima-

tor is now defined. Let {11,12,...,1k} be a subset of size k of {l,2,...,n} and

let Zc be the sum over all (E) distinct combinations of {11’12""1k}' Then, an

unblased estimator of F(k)(t) is

(k) - 0yl
FO(E) = () Xc I(x11 +oeee xik

<t), (1.4)

Let m = m(n) be a positive integer depending on n such that m€<n and mte as nte,

f Then, a nonparametric estimator of the renewal function is
]
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= Tm (k)
H (e) = L0, F (0. (1.5)

The advantages of introducing the design parameter m are discussed In §5.
The estimator of F(k)(t), ng)(t), ifs a U-statistic and thus it 1is easy to

establish that for each k>l and for each t»0 that
ng)(t) » 70 gy 2.8,

However, the almost sure (a.s.) consistency of H,(t) is surprisingly difficult
to establish. We do so in §2 by establishing that H,(t) 1s a reverse martingale
with respect to an appropriate sequence of sub og-flelds plus some negligible
terms. Also in that section we prove a.s. uniform consistency, the Glivenko—-
Cantelli property, when the uniformity is restricted to bounded subsets of the
positive real line. A counter—example is given which shows that a.s. consis-
tency cannot hold uniformly over all of the positive real line. 1In $§3, the
asymptotic normality, when properly standardized, of Hn(t) is proved via the
projection technique popularized by Hajek (cf., Serfling, 1980, Chapter 9.2.5).
To keep potential applications for this estimator as broad as possible, we dis-
tinguish between the usual renewal theory assumptions of nonnegative observa-
tions and the more general framework which also permits negative observations.
The latter {s the situation usually encountered in sequential analysis. In $4,
we prove the a.s. consistency of an estimator of the asymptotic variance. This
provides the important result of large sample lnterval estimates. We conclude
in §5 by commenting on applications and by providing an example in warranty

analysis.

§2. Almost Sure Consistency

Let a € R and ga be a real valued function defined on R* = {0,) such that

218, ] acf,,, & Fw) < - (2.1)

In this section we establish the following result.
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Theorem 2.1

Suppose that (2.1) holds. Then,

e [0 (@ a2 B = [2g ) ag,, P F W) as.  @22) |

n-+>o

In $4 and §5, we give applications where a#0. To provide motivation for Theorem

2.1, we consider the following corollary for the case a=0.

Corollary 2.l

Suppose g 18 a function defined on RY such that
f: [g(u)]| dH(u) < =.
Then,

lim f: g(u) dHn(u) = f: g(u) dH(u) a.8.

ne
Corollary 2.1 indicates that the sequence of random measures assoclated

with the sequence {H, Hn, n>l} possess a type of ergodic property. The state-

ment of Corollary 2.1 is similar in flavor to the statement of the key renewal

theorem of Smith (see 1958, (1.3)). Some of the applications of Smith's key

renewal theorem are also present in the estimation context of Corollary 2.l.

For example, since H(t) < = for each t>0 when i is positive and 02 is finite, we

may let g(u) = I(u<t) to get the following

Corollary 2.2.

Suppose F has positive mean p and finite variance 02. Then, for each t>0,

Ho(t) » H(t) a.s.

Corollary 2.1, together with some results on uniformly convergent measures due

to Rao (1962), (s also used to prove

A S
R AP T N T WP
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Theorem 2.2. ;
Suppose ¥ has positive mean u and finite variance 02. Then, for each t>0, ?

sup JH (u) ~ H(u)| + O a.s. :
uel0,t) a f
Remarks: Note that Theorem 2.2 does not require that the support of F be on rY ;
and also holds for Soth arithmetic and nonarithmetic distributions. The theorem ﬁ
is a Glivenko-Cantelli type result and is important in practice. A minor draw- i
back of the result is that the supremum extends only over bounded intervals and j
not over all of R*. That an extension of the result to RY does not hold in gen— ,%
eral is given by the following ;;
Example 2.1, ;?

Let {X1}1:l be a random sample with d.f. F, uw0. Define

Xon = max{Xl,...,Xn}. Suppose F {8 such that for some €>0 and for sufficiently

large N, we have X, > ute a.s. for all n>N. Since by the elementary renewal

theorem, lim H(t)/t = 1/u, we have for all n>N,

t+o

sup, [H_(t) - H(t)| > |H(n X ) - H(n xnn)l
teR

= [H(n X ) ~m| “n(X /u-m/n)+e a.8.#

The remainder of the sectlion 18 devoted to the proof of Theorems 2.1 and
2.2. The technique 18 to show that f: g(u) d(zkflka F(ﬁ)(u)) is a reverse mar—
tingale plus negligible terms. Reverse martingales are a natural tool in this
context if we note that Fﬁk)(t) is a U-statistic. The 1dea of applying reverse
martingales to U~gtatistics 1s due to Berk (1966). An application of Doob's
(reverse) martingale convergence theorem will then establish Theorem 2.l. Let
{xln, Xgos soes xnn} be the order statistics associated with {Xl, Xys oees Xn}.
cee, X X

We use G, = o(X ess), n2l, to define the sequence of

In? nn’ xn+1’ n+2’
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nonincreasing sub o-fields which are implicitly used in all of the following

reverse martingales. We preface the proof of Theorem 2.1 with two lemmas.

Lemma 2.1
(k)
Let ga( ) be as defined in (2.1). Then, for each k>1, ‘o ga(u) dPn (u) 1is

a reverse martingale.

Proof: It is easy to see that f: ga(u) dFﬁk)(u) is G,-measurable. Now, note

that (2.1) implies that ga(u) + 0 as u *» ». Integration by parts yields
e ™ =g (w Fw (7= 2w g (0
- - 2R ) dg (o). (2.3)

An application of Fubini's Theorem using (2.1) establishes that f: ga(u) drgk)(u)
1s integrable. Since {ng)(u), Gn} is a reverse martingale we have

E(Fsk)(“)lcn+l) = Fﬁf}(u) a.s. for each uw0. Thus
(7 g, ar P wle, ) = - [T e ®wlc,) dg, (w
- - el ) dg () = g w 8w et

Lemma 2.2

Let g,( ) be as defined in (2.1). Then,
R (a) = [0 g () dCER K F ) + [y [T g, (0) dI(s, <0

- 12 R (w) a(f, kP )

{s a zero mean reverse martingale.




L hadi ol S AN AT A Rt Ja R S 4 e Shbie i b e Ga wadh Gt W i g e

Proof:

' The proof is similar to Lemma 2.1 if we note that

Fik)(u) k<n

E(I(S, <) |G ) = {
k a I(s <w)  ion

Proof of Theorem 2.1:

To prove (2.2), it is sufficient to show

Roa (k) » a (k)
1im f: g, (u) d( LT P (W) = [ g (w) & k% F(0) as. (2.4)
k=1

n-+o

To see this, by Fatou's Lemma and similarly to (2.3), we have

n
e | [T (w aC T F ) - [P g (w a(R e r ) |
k=1

T o gl
- um [ k-£+lk P, () d(]g (u)])

o a _(k)
< lim E=m+l [, %" B () d(]g, (w)]) = 0.

To prove (2.4), we use Lemma 2.2 and Doob's (reverse) martingale convergence

theorem. Thus, there exists a random variable Z such that 1lim RMn = Z a.s.
ne>oeo

and lim EIRMn - 2| = 0. From Fatou's Lemma,

n-+>oe
0 = lim E|RMn ~2z| > lim E(RM - 2) > Elim (RM_=-2) =0

and thus EZ=0, Further

2= ln (T P at=g () = 7 (§,,, & P ) atg ()

1 had =]

. N e . . ‘ . - O - LI N - T N T .
o Ly N A “ - S . . < .- " o * ¥
VT S ST TR - S B PR A s & A s A A A
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~um I LREM W - rw) acg )
k=1 (o] n a
> 71" Pt FFW) - P w) d(g (W) =0 aus.
k=1 o] n a

Since Z2>)0 a.s. and EZ=0, we have 2=0 a.s. This is sufficient for (2.4) and the

proof.#

Proof of Theorem 2,2:

Let A = {w: <t and w is a discontinuity point of H}. Since the set of
discontinulity points of F(k)(°) is countable for each k»l1, A is countable and we
can let {ai} be some enumeration of A. Define g(u) = zi>l I(u = 81)’ Since
f: g(u) dH(u) < H(t) < =, by Theorem 2.1 we have

m
CO PSRN (3 DA e
21>1 Zk_l(Fn (a,) - 7. (a;-)) 21>I(H(ai) H(a,-)).

Thus, without loss of generality, we may assume that H(u) is continuous for u<t.
The result 18 now immediate from Theorem 2.1 and Theorems 4.2 and 6.1 of Rao

(1962). %

$3. Asymptotic Normality

Def ine

£ q(c) = Cov(F(s—C)(t-(Xl +eea +X))), l?'("_C)(t--()(l e £ X)) (3D

In this sectfon we prove the following result.

—
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Theorem 3.1
Suppose F is such that, for some 6 > O,
[ exp (-8u) dF(u) < 1. (3.2)

Let m grow sufficiently quickly so that log n = o{m) and sufficlently slowly so

that m = o(nl/z). Then, for each t > 0

2
/ n (H (t) - H(t)) +; N(O, o)

o - ¥ ¥ rs §_ (1),

r=1 g=l] rs

Remarks: Note that Theorem 3.1 holds for F both arithmetic and nonarithmetic.

Further, there is no requirement that X be a nonnegative random variable. The
requirement (3.2) is needed to ensure that P(Sk < t) dies out sufficiently
quickly as k + », Since u > 0, a sufficient condition for (L..2) is that the
moment generating function of X exists In a neighborhood of zero. However, such
strong moment conditions are not always necessary. Consider a random variable Z
whose distribution is defined by the probability density function, for some

§> 0,

3-6 I(z > 1)

£(z) = K z
where K is an appropriate constant. Then, Var(Z) is finite, (3.2) is easily

satisfied, and yet E 22+6 = oo,

U L .
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!sing W as the duration of a warranty, suppose we are interested in estl-
mating the expected number of renewals (or replacements) by time W, H(W), or
more generally, we wish to estimate H(t) for t<W. Suppose we replace the {.1.d.

v

observatlons X; In the definitfon of Hn(t) (see (1.5)) by X1 = an(Xi, W. A
little thought leads us to the conclusion that all the results of §2 through §4
remaln valid with the provision that the time t under conslderation {s bounded
by W. This Is important In commerclal applications where typically the manufac-
turer of a product only has knowledge of the time to fallure i1f 1t occurs before
expiration of the warranty.

In many situations the cholce of the design parameters m and m| Is dictated
by practical consideratlons, as in the example above. Theorem 3.1 glves some
theoretical guldelines for the choice of m. However, the convolution F(k)(t)
dies out exponentially (cf. (3.10)) as k approaches Infinity, and typically m
can be small compared to the sample size. A similar argument can be made for

my. This {s important since the amount of computations increases quickly as m

(or my) increases.
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called a warraaty and W s the duratinn of the warranty. 2 this example, one

reasonable warranty duration is the end of the early fallure perfod and thus we

vive a polnt and interval estimate of H(20),

From Tahle 1, the estimate is H (20) = Ekzl ng;(ZO) = ,46194, Frees

{1984) compared this estimate with other estimators of H(20) and found {t rea-
sonahle. To calculate the estimated variance of this estimator, from Table 2 we

have

2 _ ¢ 4 2 _
% = ip, g=] TS Ers(l) = .75385,

Thus, an approximate 95% interval estimate of H(20) is Hig5(20) + 2 ¢ /Y105
- n

which 1s roughly .46 + .17 or (.29, .63).

TABLE 1

Convolution estimates for fallure of a unit
of electronic ground support equipment.

k 1 2 3 4 5 6 7 8
Figg(zo) .35238 09048 01684 00208 .00016 0 0 0
TABLE 2

Covariance estimates for fallure of a unit of
electronic ground support equipment

-~

Ers(l) 1

r/s 1 2 3 4 ’
1 .22821 .05860 01091 00135 E
2 017133 00490 00061 . *
3 .00155 00048
4 00037 .
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etrlc estimation of this key function based on the avallable data. The simula-
tion study of Frees (1984) showed that an estimator similar to H,(t) performed

well for small (n < 30) sample sizes. An example in warranty analysis is given
below. The techniques of this paper may also be useful in sequential analysis.
For example, an important parameter Iin sequential estimation {s the mean of the

renewal function,
p = f: u di(u),

see Woodroofe (1982). Defining G zkgl f: u dFﬁk)(u), from Corollary 2.1 we

have that 2 is an a.s. consistent estimator of p 1f p {( ». Another example 1is

the expected value of the first passage time

T=1inf{n > 1: s, > 0}

From, for example, Woodroofe (1982, Corollary 2.4) we have

E(T) = exp{ik>l KL P(Sk < 0)} when ¥ > 0. Thus, by Theorem 2.1,

L exP{ZkEl k_l Fﬁk) (0)} is an a.s. consistent estimator of E(t). We intend
to explore other applications of nonparametric renewal function estimation in
sequential analysis in another paper.

To 1llustrate how to calculate the estimator, we used observations of the
time to failure of a unit of electronic ground support equipment which were pre-
viously used by the author (Frees, 1984). The data can also be found in Juran
and Gryna (1970, p. 171) and Kolb and Ross (1980, p. 170). 1In Graph 1 an esti-
mate of the fallure rate curve 1s given which suggests an early failure rate of
about 20 hours. The estimate of the fallure rate was based on Epanevicoch's
method. The calculations were done on a VAX 11/750 owned and operated by the
Department of Statistics at the University of Wisconsin-Madison. Now, it is not
unusual for the manufacturer of equipment to enter into an agreement to replace

the equipment for a certain length of time, say, W. This type of agreement 1is

» . e ) S - B - . . o .
. .
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To prove (4.4), we first establish an analogue to Lemma 2.2. Let B
R = 1 rs £+ ) rs E{I(S_ <t) (S, ., - S < Dle } B

n ~+s-1<a rs ~+s-1>n r r+s-1 r1 n N

- ) rsg_.
r,s>l I8

It is easy to see that R, is G, -measurable and integrable. Further, since

E(B{I(Sr<t) 1(S S._y € t)lGn}|Gn+1)

r+s-1 ~ °r
= E(I(S_<t) I(S . | = S ¢ )6 ,,) a.s.
and for r+s-1 < n, E(I(S_ <t) I(Sr+s-1 < t)lGn) =& g a.s., R, 18 a zero )
mean reverse martingale. Now, as in the proof of Theorem 2.1, an application of o
Doob's (reverse) martingale convergence theorem and repeated application of _1
Fatou's Lemma yilelds
' 1im ¥ rs E + ¥ rs E(I(S_<¢t) I(S_,__, - S <t)|G)
n+e r+g-l<n rs r+s—-1>n n r+s-l 1 n
- zr,s>l rs &g a.8.
Thus, to complete the proof, we note that
lim Y OB(I(S_<t) (S, ,-~S_,<t)G)=0 a.s.
ne  r+s-15n r r+s-1 r-1 n
and
lim Z rs Ers - zr,s-l rs Ers =0 a.s.¥

n+e r+s-1<n

§5. Concluding Remarks

The renewal function arises in a wide variety of applications of probabil-
istic models such as in reliability theory, inventory theory and continuous sam-

pling plans. In this paper we have presented the asymptotic theory of nonparam-

e i LI C TR S SR S
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- m a m
“ie °n2 - L ! €y ™ (inl k Ft(‘k)(t))z, (4.3)

,8=]1
n we have
2 2

lim a“ = g a.8.
nre

Remarks: For a general F, by Theorem 3 of Baum and Katz (1965), E |X|3 {wiga
sufficient condition for (4.2). Further, from (3.10), it 1is easy to see that

. (3.2) 1s sufficient for (4.2). Thus, we have

Corollary 4.1.

Assume that the conditions of Theorem 3.1 hold and let onz be defined as in

_!- (4.3). Then,

/'n/o, (H (t) - B(t)) +p §(0,1)

- and thus, for a € (1/2,1),

~ lim p(ﬂn(:) - zy/9 an//'i < H(t) < nn(:) + 2o/2 cn/v"ﬁ) = ]l-q

n+e

where 24/2 is the a/2 quantile of the standard normal distribution.

e Proof of Theorem 4.1:

’— From Theorem 2.1, with a=1 and gq(u) = I(u<t), we have
Ll r® ey o 1k e .

k=1 © 'n k1 8.8

L Thus, we need only show that

™ -

L Et,s-l rs £ * zr,ol rs £ a.s. (4.4)
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This result and Theorem 3.1 will immediately provide a confidence interval for

H(t).

Let Ers - E(F(r-l)(t‘x) F(s-l)(t-x)). We wish to estimate

2
o = zr,s>1rs Ers(l)

- I oyre (B @0 p0D (e-xyy - (o) ¢ 0}

= Zr.s>1 rs Ers - (zr>l r F(r)(t))z'

To define an estimator of §__, let {11’12""’1r+s-1} be a subset of {1,2,...,n},
not necessarily ordered. Let Zp denote the summation over all n! permutations of
subsets of size r+s-1 from {1,2,...,n}. An unbiased estimator of Ers is

E - - 1 !
£ e (n-r-s+1)!/n! Xp I(x11 + x12 + oae. + x1r <t)

I(xl + x1 4+ ces + xi <t). (4.1)
1 r+l r+s-1
In this section, we prove the following result.
Theorem 4.1
Assume that
(k)
2k>1 k F7(t) < o, (4.2)

Let m; = mj(n) be a positive integer depending on n such that mj<n and oy 4+ = asg

n 4 », Then, with
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To prove (3.12), note that

a (M7 (S (7%
= ! 8! (n-1)! (n-8)! {(r-c)! (s-&)! ¢! (n-r-s+c)! (n-1)1}7!
= A(n,r,8) (D) (8) ! (n-r=s+1)! / (n-r-stc)!.

Note that c! (n-s-r+1)! / (n-r-s+c)! = 0(n~l),

min(r,s)

o1 (5 () = ("1®), sup  Aln,r,8) < 1+o0(1), and

| € () | < F(E)(e) ¥(8)(e). Thus,
-1
| Gegmr @ () Lemp () (0D E(@ |
-1 m () (s) s ,r, ,8
<0(n ) Zr’ssl Fol(e) % () Zc-Z )

com™) [ M (T (%) = ota™

by (3.10) and the fact that for p<l,

L r+s ,r+g
zl"s-l P ( r ) < oo¥

$4. Interval Estimates

A local asymptotic normality result such as Theorem 3.1 is appealing
because it gives Information about the rate of convergence of Hn(t) to H(t).
However, in applications {t is also desirable to give interval estimates of

H(t). In this section we present an estimator of 02 and prove its almost sure

consistency. In the proof the reverse martingale technique of $2 is utilized.
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Lemma 3.3 .

Under the assumptions and notation of Theorem 3,1,

e (0 D7 LS O D 60 - m g ) o,

Proof:

Sufficient for the proof is

m ny=1 ¢ s n-s
" zr.s-l (r) Zc-2 (:) (r-c) Ers(c) >0 (3.12)
and
2L e OO A - g ) »o. (3.13)

To prove (3.13), by Lemma 3.2, we have
n (:_‘).l 8 (:::) -rs =rs ((n-8)! (n-r)! {(n—l)! (n—r:--s-i-l)!}_l - 1)

= rg (A(n,r,8) - 1).

Thug, by Fatou's Lemma,

1im | Zr,s (n (:)-1 s (::?) -t8) £__(1) |

8

.

ri . < Zr,s rs | £rq(1) | 1im  sup | A(n,r,8) =1 | =0,
s r,s<m

.

LI

3

)

¢

e




Proof:

Recall the inequality (cf., Feller, 1968, p. 54),
V25 (0 + 1/D™2 expl-(n + 172) - 1/26/n + 1/2)7 Y
<nt < /Iw (o o+ 1/2)™1/2 exp{-(n + 1/2)}.

Thus,

(n-r+ D2 (0o g 4 1) V2 1y o)

A(n,r,8) <
(n - 1/2)“.1/2 (n-T-8+ 3/2)“-"-""'3/2

Define n; = n-1/2 and ny = n-r-s+3/2. Then,

| ny
A(n,r,8) < (1 - (r—l)/nl) (1 + (r-l)/nz)

(1 + (r-8)/(n-r+1/2))T {1 + o(1)}.
Thus,

sup log A(n,r,s) < sup {n1 log(l - (r-l)/nl)
r,s r,s

+ ny log(l + (r-1)/ny) + k log(l + (r-s)/(n-r+1/2))} + o(1)

= syp =(r-1) + o(1) + (r-1) + o(1) = o(1).

Thus, 1im sup A(n,r,s) € 1. The inequality in the opposite direction
r,s

i1s similar.#
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Thus, from (3.2),

Y n (H(t) - H*(t)) =vVn Z‘Om F(k)(c)

1

< /1 e®EEeEN® 1) .o

by an easy application of L'Hospital's rule since log n = o(m). Thus, suffi-

clent for the proof of the lemma is
- *
TR (H () - B (£)) » N(O, o). (3.11)
To prove (3.11), from (3.5), define

Uy =0t Loy (r“"l)(:-xj) - ¥y,

Now {Unj; i=1,...,n, n>l} is a double array of random variables that are inde-

pendent within rows. Now E Unj = 0 and, by (3.6),

n -
Var( | U ) = n ! I ™. rs £ (1). Because of the strong moment conditions,
y=1 nj r,s=1 rs
§2 it 18 easy to check that the usual uniform asymptotic negligibility and
»
rf‘ Lindeberg conditions hold (cf., Serfling, 1980, §1.9.3).%*
p* -
F!!
- Lemma 3.2
Ef‘ Define A(n,r,s) = (n-r)! (n-s)! {(n-1)! (n-r-s+l)!}-l. If r=o(n!/2) and
-
r. s=o(n!/2), then

1fm sup A(n,r,s) = 1.
n+*® r,s

T rry
el .
N '

s
i,




Hence, from (1.5) and (3.5),

- n (r) 3 _(s-1)
Cov(H _(t), H (t)) = ) Cov(R_ """ (t), s/n DR (t-X

r’s-l 1-1 j))

ooy 8 Covr{P (o), P& Dex )

- Zr':_l re/n £ (1), (3.8)

Thus, from (3.6) - (3.8),
n E(H (t) - ﬁn(t))Z - n{Var(Hn(t)) + Var(ﬁn(c)) -2 cov(nn(g), ﬁn(c))}
m n~-1 % 8 n-r
= Lgm 2 (D czl () (02 & q(e) - 18 £ (D} (3.9)

We now present a series of lemmas which, when taken together, provide

a
proof of Theorem 3.1.
Lemma 3.1
Under the assumptions and notation of Theorem 3.1,
/T (H_(t) - B(e)) + O, o).
Proof:
By the Markov inequality, for 6>0, we have
) (e) = p(-8 5,2 -0 t) < e (= e, (3.10)

vy L ik Sl ol AL S P et ad ot a i s b - Al B kel oA ek e e S i e




E I(Xa + xa + cea + xa <t) I(xb + xb + se0 + xb < t)
1 2 r 1 2 8

- Py #(® ey £ ().

Thus,

cov({P (0, (M (1))

n,~1 ,n.-1 (r)
= () Q) EL Zc {[1(xal +oaee xar <t) - ()

[I(xb LTI t) - F(B)(t)]}
1 8

n\-1 r 8 n-s
= (D7 I, O (TH g (@

since the number of distinct choices for two subsets of size r and s, respec-

tively, having exactly c elements in common is (:) (:) (:::). Thus,
Var(Ry(e)) = I T, (D7 LI ) (T g (0. (3.7)

To calculate Cov(H,(t), H (t)), we first examine the covariance between Fir)(t)

and P(°°1)(:-x1). Now,

cov(r{P(e), P (e-x)))

= (’1:)'1 {(::}) Cov(F(r-l)(t~Xl), F(s_l)(t-xl))}

= r/n Ers(l)'
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From the definition of Fﬁk)(t) in (1.4), an easy calculation shows that

e (o) |x)) = (MH7HETH p* D exy + (Uh 2 ® o))

- e/m) PO D (ex ) + (a-krm) #® o). (3.3)
* ® (k)
Define a truncated version of H(t), H (t) = J F' " '(t). We define the projec-
k=l
tion of H,(t) on m*(t) by
H(t) = ] E(Hn(t)|x1) - (n-1) H (t). (3.4)
j=1 :

From (3.3), we have

B () - B'(e) = o} ] oyt k{F(k-l)(t-x1) - F® ). (3.5)

j=1 k=1 -

The idea of projecting Hn(t) onto the original independent observations is
due to Hoeffding. Since ﬁn(t) is just the sum of n independent random vari-
ables, the usual theorems for double arrays of independent random variables are
used to obtain a limiting asymptotic distribution for ﬁn(t). We then show that
the moments of Hn(t) - ﬁn(t) are small in the appropriate sense to get an iden-

tical asymptotic distribution for H (t).

From (3.1) and (3.5), we have

Var(ﬁn(c)) -} Loy Loy T8 cov(F{T D (e-xy, ¢V (e-x))

=n L LT e g (D). (3.6)
To calculate Var(H,(t)), we first examine the covariance between Fﬁr)(t) and
Fﬁs)(t)‘ Let {al, 8y, ~oey ar} and {bl, byy -eey b‘} be two subsets of

{l, 2, cee, n} that have ¢ < min(r,s) elements in common. Then,

T - . B ey N WP A .= N
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